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Part I

Collaboration Searching Using

Swarming Technique
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CHAPTER 1

Introduction to the Collaborative Searching

Problem

Collaborative control has long attracted research interest and different scenarios

have been studied. A variety of cooperative control model that lead to agent

swarming, which makes the agents to form a global pattern under local inter-

actions. These kinds of model are originally designed to model the behavior of

animal groups. Other models relies on specific tasks that the agents need to

conduct, thus requires other tools like the consensus problem or coverage control.

Among swarming models, two distinct types are first-order and second-order

models. First-order models directly control the velocity of the agents, while

second-order models only control the acceleration of the agents. The famous

Vicsek model [VCB95] is a good example of a first-order model. The agent

movement pattern is given as

xi(t+ 1)− xi(t) = vi(t)∆t, (1.1)

Here xi denotes the position of the i-th agent, and vi denotes the velocity of the

agent. The velocity vi(t) has a constant length of v and a direction angle of θi(t),

which is determined by

θi(t+ 1) =< θ(t) >r +∆θ. (1.2)

Here < θ(t) >r denotes the average angle for all agents within radius r of the

2



agent i and ∆θ is a random noise of given strength. Depending on the density of

agents and strength of noise, different pattern may occur. When noise is large,

the agents move randomly. When the noise is small and density is high, the

agents become all ordered to one direction. When the noise is small and density

is also small, the agents will form groups that move together. See Fig. 1.1.

Figure 1.1: Numerical simulation for Vicsek model, from [VCB95], copyright 2006

The American Physical Society, reproduced with permission. A and C are when

noise is large, where A is the initial value and C is after some time has passed. B

is the case when noise is small and density is also small, and D is the case when

noise is small but density is large.

3



An example of a second-order swarming model is described in [DCB06].

dxi
dt

= vi , (1.3)

and

mi
dvi
dt

= (α− β|vi|2)vi −∇U(xi), (1.4)

where

U(xi) =
N∑
j=1

Cre
−|xi−xj |/lr − Cae−|xi−xj |/la . (1.5)

In this system, each agent of the swarm is subject to self-propulsion, drag, and

attractive, repulsive, and velocity alignment forces from each of the other agents.

Under different parameters, the agents may form clumps, ring clumping, or rings.

See Fig. 1.2. For more examples of swarming models, see [JK04], [VCB95], and

[SPL08].

Models that require agents to perform given tasks differ from each other due

to the vast diversity of scenarios. Here we give a few examples. The coverage con-

trol problem [BC05] requires the agents to perform spatially-distributed sensing

tasks. It then assign different regions to different agents to maximize the effi-

ciency. The pursuit-evasion scenario [BBH09] considers the case where a group

of predators hunting a single prey. It then designs the best movement strategy for

the predator. The consensus problem [GCB08] considers how to determine the

true value when multiple agents take different measurements of the value. It is

especially hard when the communication is limited. The team-forming problem

[SB09] assumes that the agents cannot finish a task alone. Different tasks require

different combination of agents, and tasks are assigned dynamically over a large

region. It then computes the agent movement dynamically when task is assigned.

Using such collaborating sensors to detect and locate targets within an area has

been studied in reference to the “mine counter-measure” problem [CMT03], the

specific military task of locating ground or water-based mines.

4



Figure 1.2: Numerical simulation for the model from [DCB06], copyright 2006

The American Physical Society, reproduced with permission. A, B and C are

clumps, ring clumping, and rings respectively.

5



In this part, we develop a multiscale search and target-locating algorithm

for a type of mine counter-measure problem in which a number of independent

agents are given the task of determining the precise location of targets within a

domain. The algorithm is designed to handle problems where the scale of the

target sensing radius is much smaller than the domain size. The focus of this

work is to identify optimality of the algorithm as a function of the swarm size,

the number of agents per group and the distribution of resources into different

groups.

We assume a simply-connected domain, and use noisy sensors that detect a

scalar quantity emitted by each target, but only when an agent is within a fixed

distance rs from a target. We control the motion of the agents with a model that

makes the individuals form distinct swarms, and present filtering techniques that

allow for locating targets despite noisy data. The inspiration for this approach

comes in part from biology, as in the example of birds forming flocks when flying

and searching for food [Tra07].

Next, we analytically derive some of the system’s main scaling properties,

such as the relationship between swarm size, distance between agents and target

sensing radius, and compare with the experimentally recorded data. We conclude

that our analytical approach matches well the data from the simulations.

We assume a sensing radius rs much smaller than the domain but comparable

to or less than the swarm size. Other assumptions, however, may require different

algorithms. For example, in [BLT09] the sensing radius is infinite, but sensing is

limited by obstacles, and in [Olf07] communication between agents is not always

possible.

We consider one such scenario and its corresponding algorithm in the next

chapter. We then consider some properties of the algorithm in Chapter 3 , fol-

6



lowed by a conclusion and ideas for future research in Chapter 3.3.
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CHAPTER 2

The Collaborative Searching Model

We consider M targets in a two-dimensional simply-connected domain, that is,

a flat enclosed area with no holes, and N agents able to move freely within the

domain. Each target emits a radially symmetric scalar signal g(r) that decays

with the distance r from the target, and drops to zero at some rs, the target’s

sensing radius. Agents detect this signal with an additional Gaussian, scalar

white noise component added. If an agent is within the sensing radius of multiple

targets, it detects only the sum of the individual signals, again with a noise

component added. We suppose that an agent takes sensor readings at regular

intervals (once per “time step”) spaced such that the noise between time steps

can be assumed independent.

The algorithm accomplishes 3 tasks: it filters the noisy sensor data, controls

the coordinated movement of the agents based on this data, and determines when

a target has been acquired and where it is located. Section 2.1 focuses on the

techniques we use to process sensor data, Section 2.2 describes the movement

control of the agents, and Section 2.3 describes the method for locating a target.

2.1 Sensor Data Processing

Due to noise in the agent sensor readings and the sensing radius rs being finite,

we employ two distinct filters to the data from the readings: a Kalman filter and
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a Cumulative Sum (CUSUM) filter. The Kalman filter reduces or eliminates the

noise in the data, while the CUSUM filter is well-suited to determining whether

or not an agent is within the sensing radius of a target.

The sensor data model follows as a mathematical formula. As explained in

Section 1, the formula describes sensor readings as the sum of scalar signals that

depend only on the distance from a target, together with a noise component.

Given the M targets at positions yj and an agent i with current position xi(tk)

at timestep k, the agent sensor reading si(tk) is given by

si(tk) =
M∑
j=1

g(|yj − xi(tk)|) + ni(tk) , (2.1)

where ni(tk) denotes sensor noise and g(r) is the signal strength at a distance r

from the target. For simplicity, we assume g(r) is isotropic, smooth, decaying,

the same for all targets, and has a cutoff at rs.

2.1.1 Kalman Filtering

Before using the agent sensor readings to locate targets or control agent motion,

we pass the sensor readings through a Kalman filter. Since the signal from the

target is presumed to be varying smoothly with the distance to the target r (up

to the cutoff point rs) as the agents navigate the environment, a Kalman filter is

a natural choice to eliminate or reduce noise in the sensor readings. The Kalman

filter takes the sensor reading si(tk) of agent i at time tk, and converts it into the

filtered data fi(tk) according to

Pi(tk) =
Pi(tk−1)Ri(tk)

Pi(tk−1) +Ri(tk)
+Qi(tk) , (2.2)

and

fi(tk) = fi(tk−1) +
Pi(tk)(si(tk)− fi(tk−1))

Pi(tk) +Ri(tk)
. (2.3)
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Here Ri(tk) is the square of the noise amplitude, known or estimated by the

agent, and Qi(tk) is the square of the change of the signal amplitude between

two time steps, either fixed beforehand or estimated using the current velocity of

the agent (in this chapter, it is fixed beforehand). Pi(tk) is roughly the variance

of the sensor reading’s amplitude. The output fi(tk) of this filter is then used in

target locating, as described in Section 2.3.

2.1.2 Threshold Check and the CUSUM Filter

Before attempting to locate targets, an agent needs to determine whether or not

it is receiving an actual signal, rather than just noise. In other words, an agent

needs to determine whether it is within the sensing radius of a target at each

time-step tk. This information is then used both in controlling the movement

of the agents and in determining when to begin estimating a target’s position.

In order to determine the sensing status of an individual agent, we employ a

CUSUM filter, as this type of filter is well-suited to determining abrupt changes

of state [PAG54], and has been used in the similar task of boundary tracking

[JB07, CWT09]. The filter keeps a sort of running average of the signal and

notes when this average seems to have risen above a cetain threshold, indicating

that the agent is now within the sensing radius of a target. As the noise is

effectively summed up by the filter, it tends to cancel out.

In the original form of the CUSUM filter, we imagine a sensor that returns

a sequence of independent observations s(t1)...s(tn), each of which follows one of

two probability density functions: a pre-change function g0 and a post-change

function g1. The log-likelihood ratio is

Z(tk) = log[g1(s(tk))/g0(s(tk))] , (2.4)

10



and we define the CUSUM statistic as

U(tk) = max(0, Z(tk) + U(tk−1)), U(t0) = 0 . (2.5)

We then choose a threshold Ū , and when U(tk) ≥ Ū for the first time, the algo-

rithm ends and we declare that the state has changed from g0 to g1. The thresh-

old should be chosen so as to minimize both false-alarms (these happen more

frequently for small Ū) and time to detection (this gets larger as Ū increases).

In our system, we choose the special case where sensor reading follows a

Gaussian distribution. In the pre-change state g0, the agent is outside the sensing

radius of any target and reads only noise, which we model as a Gaussian with zero

mean and variance σ2. In the post-change state g1, the agent enters the sensing

radius of a target, and although the probability distribution is still a Gaussian

with the same variance, the mean is now larger than zero, which we set to be 2B.

Then

Z(tk) = log

[
e−[s(tk)−2B]2/2σ2

/(σ
√

2π)

e−s(tk)2/2σ2/(σ
√

2π)

]

=
−[s(tk)− 2B]2

2σ2
+
s(tk)

2

2σ2

=
2B

σ2
[s(tk)−B] . (2.6)

We also modify the algorithm so that it can detect status changes both into

and out of detection zones. Thus, we implement two filter values: Ui(tk) to

determine when an agent has entered a zone, and Li(tk) to determine if they

have left a zone. We also define a binary function bi(tk) which denotes the status

of an agent; bi(tk) = 1 denotes that the agent is near a target and bi(tk) = 0

means otherwise. The filter values all start at zero, and are updated according

to

Ui(tk) = max(0, si(tk)−B + Ui(tk−1)) , (2.7)
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Li(tk) = min(0, si(tk)−B + Li(tk−1)) , (2.8)

and

bi(tk) =


1 bi(tk−1) = 0, Ui(tk) > Ū

0 bi(tk−1) = 1, Li(tk) < L̄

bi(tk−1) otherwise.

(2.9)

In addition, when the status of agent i changes, we reset the corresponding Ui or

Li to zero. Here we have set the constant coefficient 2B
σ2 to 1, for convenience.

Recall that B is a sensor value that is less than the predicted mean when

inside a sensing radius, and Ū is our chosen detection threshold. So, when the

agent is near a target, the sensor reading si(tk) tends to be larger than B, causing

Ui(tk) to grow quickly until it is larger than Ū , indicating a change in status. The

converse is true if an agent leaves the sensing region of a target. The values of

the various parameters of the filter are problem-specific, and should be estimated

in a manner that minimizes both false-alarms while keeping the average time to

detection as low as possible, as mentioned above.

An example of sensor reading from an agent within our current simulations

can be seen in Fig. 2.1. The Kalman filter does a good job of reducing noise,

bringing the sensor readings much closer to the true signal. Near the middle of the

plot, the agent enters into the sensing radius of a target, and this is reflected by

a transition within the CUSUM filter from b = 0 to b = 1. There is, as expected

from the behavior of CUSUM, a slight delay between when the agent actually

enters into the radius and when this transition of b occurs. After spending some

time within the sensing radius, the estimated target location stabilizes, the agent

subtracts the true signal from its measurements (this will be explained in Section

2.3), and the agent leaves to find further targets.
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Figure 2.1: Example filter output from one agent as a function of time, from one

of our simulations. The densely-dotted line represents the signal before noise that

should be detected by the agent. The dots are the actual noisy signal detected

by the agent at each time step (i.e., the densely-dotted curve plus noise). The

thicker step function is the signal status returned by the CUSUM filter, and the

thinner straight line represents the value B = 0.1. The sparsely-dashed curve is

the output of the Kalman filter when applied to the detected noisy signal.
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2.2 Agent Movement Control

We have chosen to control the movement of our agents by breaking up our total

agent population N into a number of distinct, leaderless “swarms”. This is done

for a variety of reasons. Firstly, it increases robustness, as any individual swarm

member is not critical to the functioning of the swarm as a whole. Secondly,

since we imagine that any sensor data acquired by readings from these agents is

local in space, a swarm provides a method of extending the effective sensing zone

to the whole swarm. Thirdly, a swarm of nearby agents may use their combined

measurements to decrease sensor noise. Finally, the swarm provides the ability

to locate targets via triangulation or gradient methods. Each of the various

swarms may search within a different region of space if a divide-and-conquer

tactic is desired, or each swarm may be free to roam over the entire region. In

the following two sections we mainly focus on the control of one swarm.

Since the agents have a limited sensing radius, we choose to employ two

different phases of swarm motion. When there are no targets nearby, the agents

should move through the space as quickly and efficiently as possible, performing

a simple flocking movement as legs of a random search. After a signal is sensed

via the CUSUM filter, the agents should stop, then slowly move around the area,

searching for the exact position of the nearby target. We call these two phases

the searching phase and the target-locating phase, respectively. For a general

idea of the two types of motion, see Fig. 2.2.

2.2.1 The Swarming Model

We choose a second-order control algorithm similar to that described in [DCB06]

and [CHD07], which has been successfully implemented as a control algorithm
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Figure 2.2: A screenshot from the simulation. Four swarms with eight agents

each are used. Three of them are in the searching phase, and the upper right

swarm is in the target-locating phase. Large circles around targets denote the

sensing radius. Small crosses are already registered targets.
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for second-order vehicles on real testbeds [NCT05, LHH07]. In addition to the

self-propulsion, drag, and attractive, and repulsive forces that are described in

the original model[DCB06], the agent is also subject to a velocity alignment force.

The position xi and velocity vi of an individual agent i with mass mi in a swarm

of N agents are governed by
dxi
dt

= vi , (2.10)

and

mi
dvi
dt

= (α − β|vi|2)vi − ∇U(xi) +
N∑
j=1

Co(vj − vi) , (2.11)

where

U(xi) =
N∑
j=1

Cre
−|xi−xj |/lr − Cae−|xi−xj |/la . (2.12)

Cr and lr are the strength and characteristic length of the repulsive force, respec-

tively, and Ca and la are the corresponding values for the attractive force. Co is

the velocity alignment coefficient and α and β are for self-propulsion and drag,

respectively. Depending on these parameters, the swarms can undergo several

complex motions [DCB06], two of which are flocking and milling, and in some

cases the swarms can alter motion spontaneously [KMK07]. For our purposes,

we simply set these parameters to obtain the type of motion desired.

2.2.2 Searching Phase

In this phase, the agents move together in one direction as a uniformly-spaced

group travelling with a fixed velocity. Since the agents know nothing about the

location of targets, a random search is chosen here. Specifically, we use a Lévy

flight, which is optimally efficient under random search conditions [VBH99], and

is the same movement that some birds employ [Tra07]. To accomplish this type

of search, we simply command the swarm to turn by some random angle after
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flocking for some random amount of time. For a Lévy flight, the time interval ∆t

between two turns follows the heavy-tailed distribution

P (∆t) ∼ ∆t−µ , (2.13)

where µ is a number satisfying 1 < µ < 3. The value of µ should be chosen

optimally according to the scenario in question, as in [VBH99]. For destructive

searching (where targets, once located, are no longer considered valid targets), µ

should be as close to 1 as possible. For non-destructive searching (where located

targets remain as valid future targets), the optimal µ ∼ 2− 1/[ln(λ/rs)]
2, where

λ is the mean distance between targets and rs is the sensing radius.

2.2.3 Target Locating Phase

When enough agents agree that a target is nearby (see Section 2.1.2), the target-

locating phase begins. This minimum number is set by the swarm consensus

parameter p, such that the swarm decides to enter this phase when p% of the

agents or more in the swarm are sensing a target. Once in this phase, we want

the agents to move only towards the target, so we remove the velocity alignment

force (Co = 0), disable self-propulsion (α = 0), and issue a halt command so that

all agents begin target locating with zero velocity. In addition, data from agents

within the sensing radius is used to continually estimate the position ȳ of the

target (see section 2.3), and the agents in the swarm then try to move towards it,

thus attracting other agents in the swarm not yet in the sensing radius to move

closer to the target as well. To make the agents move towards the target, we add

another potential in Eq. 2.12,

Uc = Cc(xi − ȳ)2/2 , (2.14)
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where ȳ is the estimated position of the target, and Cc is an adjustible parameter.

The full control equations in the target-locating phase therefore become Eq. 2.10

and

mi
dvi
dt

= −β|vi|2vi −∇U(xi) , (2.15)

where

U(xi) =
1

2
Cc(xi − ȳ)2 +

N∑
j=1

Cre
−|xi−xj |/lr − Cae−|xi−xj |/la . (2.16)

To show that this system converges to a stationary swarm centered on the

target, we note that the total energy of the target locating system,

E =
1

2

N∑
i=1

mi|vi|2 +
N∑
i=1

U(xi) , (2.17)

serves as a Lyapunov function, so that the collective tends to minimize it. That

is,

Ė = −β
N∑
i=1

|vi|4 ≤ 0 . (2.18)

Hence, velocities will eventually reach zero (due to drag) and the swarm mem-

bers will spatially re-order themselves so as to minimize the potential energy,

forming a regular pattern centered at the target position. This stationary state

serves as a spiral sink, however, so the swarm tends to oscillate about the target

position for some amount of time that depends on the value of Cc, with a high

Cc yielding less oscillation. However, since the potential being minimized now

includes a term that is effectively attracting all of the agents towards the center

of mass, the swarm will be more compact than it was before the target locating

potential was added, so too large of a Cc will make the swarm smaller than de-

sired. In practice, we want Cc just large enough to minimize the oscillations in

space without making the swarm get too compact.
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2.3 Locating Targets

During the target-locating phase of motion, all agents of the swarm that are

within the sensing radius keep a common register of all of their positions and

signal readings made since entering the radius (see “Threshold Check”, Section

2.1.2, above). The agents then use a least-squares algorithm to give an estimate

ȳ of where the target is located via

ȳ = min
y

N ′∑
k=1

[g(|y − x(tk)|)− f(tk)]
2 , (2.19)

where N ′ is the number of sensor readings in the common register.

Solving this least-squares minimization is straightforward, but certain as-

sumptions for workability and precision are needed. It is assumed that the form

of g(r) is known by the agents for the algorithm to work. For certain classes of

targets and scalar fields, we believe this assumption is fair. To precisely estimate

a target’s location, we also assume that only one target is within sensing range, or

that target sensing radii do not overlap significantly, so one target is much closer

to the agents than any other target. When the sensing radius is small compared

to the average distance between targets, these assumptions should hold true. If,

instead they prove to be invalid for the particular system at hand, other methods

such as gradient estimation could be used.

If the estimated position of the target stabilizes, it is considered to have

been located, and the agents register the position of the target and return to

the searching phase. The model signal g(r) from the registered target will be

subtracted from further sensor readings so that it is not detected again, a form

of destructive searching. We thus modify Eq. 2.1 to read:

si(tk) =
M∑
j=1

g(|yj − xi(tk)|) + ni(tk) −
M ′∑
j=1

g(|ȳj − xi(tk)|) , (2.20)
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Figure 2.3: A simple flowchart of the algorithm.

where M ′ is the total number of registered targets. Note that the positions of

these targets may or may not be accurate, due to noise and other errors. If,

instead of the estimated target location stabilizing, the agents lose track of the

target, they simply return to the searching phase without registering the target.

For a general idea of the entire algorithm, see Fig. 2.3.
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CHAPTER 3

Property and Evaluation of the Algorithm

3.1 Numerical Performance Evaluation

Two main criteria for the evaluation of this algorithm are efficiency and accuracy.

These are roughly determined by the two phases: efficiency is mainly related to

the swarming phase, while accuracy is mainly related to the target-locating phase.

To evaluate the performance of the algorithm, we divided the agents into groups,

ran the algorithm, and took the following measurements: the average time needed

for a swarm to locate one target (average time), the average distance between

the actual and estimated target positions (average error), and the percentage of

registered positions that are not within any actual sensing radius (percentage

false registers). Note that the false registers are not included in the average error

calculation.

We ran computer simulations of the algorithm in a dimensionless 20 by 20

area, with a total of 32 agents and a dimensionless sensing radius of 1. The signals

had a Gaussian form, with a peak signal-to-noise ratio of about 10.5 dB. Two

cases were considered. In the first case, there were 20 targets and we restricted

the duration of the simulation, the main goal being that of measuring efficiency.

In the second case, we distributed just 5 targets randomly, and used a much

longer time limit, with the main goal of measuring accuracy. In either case, the

simulation ends either when time runs out or when all targets are found. For each
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case, we performed 100 trials and calculated the average of the measurements.

Since we considered multiple groups of agents, it was important to decide

how they must cooperate with one another. We tried two different policies. One

was a simple divide-and-conquer tactic where we divide the whole region into

sub-regions [EFS05, HCH06] before the simulation, with each swarm in charge of

a single sub-region, remaining within that area the entire time, and performing

a Lévy flight search pattern confined to its designated area. The other policy

allows the swarms to search the entire region independently of one another. In

the results, we denoted the use of the divide-and-conquer tactic with an asterisk

(*).

An important factor that influenced our results is the number of groups into

which we divided the agents, or equivalently N , the number of agents in each

swarm. We therefore present the results for several choices of N . They are in

Tables 3.1 and 3.2, with the associated plots presented in Figs. 3.1 and 3.2.

From the tables and their corresponding plots we see that the number of

agents in the swarm works as a balance between accuracy and efficiency. As

could have been anticipated, larger swarms give more accurate results (smaller

target position error, less false registers), while multiple, smaller swarms make

the search more efficient (faster detection time). To have an acceptably low error

and low false target registration rate, groups of at least four agents should be

used. This is perhaps due to the fact that at least three agents are needed to

locate a target, using triangulation. Also, we note that the divide-and-conquer

tactic seems to work somewhat better for this scenario.
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Table 3.1: Case 1: 20 targets, time limit 50.0. Asterisks denote the use of the

divide-and-conquer tactic.

Swarms Agents/

swarm

Average

time

Average

error

False

reg.

1 32 9.17 0.163 9.77%

2* 16 4.83 0.155 8.40%

2 16 5.45 0.159 11.90%

4* 8 3.15 0.158 8.68%

4 8 3.52 0.16 10.59%

8* 4 2.67 0.208 9.91%

8 4 2.9 0.200 11.73%

16* 2 2.64 0.257 15.59%

16 2 2.64 0.253 15.17%
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Figure 3.1: Average search time (left) and average error (right) as a function of

the number of agents in each swarm for case 1 (20 targets and time limit 50.0).

The continuous line is for the divide-and-conquer tactic and the dashed line is

for the results without divide-and-conquer.
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Table 3.2: Case 2: 5 targets, time limit 200.0. Asterisks denote the use of the

divide-and-conquer tactic.

Swarms Agents/

swarm

Average

time

Average

error

False

reg.

1 32 45.53 0.128 10.76%

2* 16 25.51 0.116 8.06%

2 16 26.89 0.117 8.95%

4* 8 14.22 0.134 8.96%

4 8 16.64 0.118 8.79%

8* 4 8.35 0.161 7.24%

8 4 10.58 0.172 8.97%

16* 2 8.31 0.223 11.97%

16 2 8.91 0.252 13.79%
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Figure 3.2: Average search time (left) and average error (right) as a function of

the number of agents in each swarm for case 2 (5 targets and time limit 200.0).

The continuous line is for the divide-and-conquer tactic, and the dashed line is

the for the results without divide-and-conquer.
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3.2 Scaling Properties

Having noted the results above, one may wonder how these are affected by the

various scales present in the system, such as the swarm size, distance between

agents, target sensing radius, etc. Below we present some arguments for deter-

mining optimal search parameters given these scales.

3.2.1 Estimating the Swarm Diameter

We first define a measure for the swarm size, the swarm diameter D = max(|xi−

xj|)Ni=1, where N is the number of agents in the swarm. Let us also define the

inter-agent distance l = |xi − xj| for any two nearest-neighbor agents i, j.

For the remainder of this section (and for the results in Fig. 3.4), we choose

the parameters of motion so that the system is either in regime VI (catastrophic)

or VII (H-stable) as defined in [DCB06], with the swarms flocking naturally in

VII, and in VI due to the velocity alignment term Co in Eq. 2.11. Under these

regimes, D and l stabilize after a transient period, so for the purposes of this

section we will consider them to be constant in time. In such a stable swarm,

agents are uniformly distributed in space along a hexagonal pattern, so that the

swarm diameter D and inter-agent length l are related geometrically as follows:

since the area occupied by a single agent in the swarm is Aa ≈ πl2/4 and the

total swarm area is As = πD2/4 ≈ NAa, then

D '
√
Nl . (3.1)

Thus, D scales with l, and for N = 16 (as used in Fig. 3.4) we get D ' 4l.

Since l is approximately the distance that minimizes the inter-agent potential

of Eq. 2.12, we can easily adjust the swarm diameter D by varying the system

parameters.
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Figure 3.3: Scales influencing target locating time: the swarm diameter D, in-

ter-agent length l, and sensing radius rs.
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3.2.2 An Upper Bound on the Optimal Swarm Diameter

Consider a setting with one target of sensing radius rs and one swarm of diameter

D, as in Fig. 3.3. We measure the average time to locate the target T̄ by starting

the swarm at the center of the search field at t0, placing the target at a random

location within the field, allowing the simulation to run until time T when the

target is found, and averaging these T values over many runs of the simulation.

As D grows, we observe (see Fig. 3.4) that T̄ decreases until an optimal swarm

diameter Dopt is reached, after which T̄ increases again, growing without bound.

We wish to explain this, by first finding an upper bound on Dopt.

Let us begin by fixing the swarm consensus percentage at p = 25%; i.e.,

the swarm of agents decides a target is present when 1/4 of the agents or more

are within the sensing area of a target, At = πr2
s (see Fig. 3.5). Clearly, the

borderline case between detection and non-detection occurs when the target area

is completely subsumed within the swarm area, yet there are only just enough

agents (25% of the total) within the target sensing radius to detect it. If we

assume a constant density of agents in the swarm, this means that we have

detection when the target area is at least p% = 1/4 of the swarm area. So, it

must be the case that

D ≤ 4rs , (3.2)

or else the target will not be detected at all. This condition therefore gives an

upper bound for Dopt. Condition (3.2) can also be written in terms of l, in which

case l ≤ rs; the borderline case is illustrated in Fig. 3.5(b). In Fig. 3.6, snapshots

from a simulation show how the swarm flies over the target without being able

to detect it in a case when condition (3.2) is violated.
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Figure 3.4: Average time to reach a target T̄ as a function of the swarm diameter

D for rs = 3.0. Values of D were obtained over a range Cr = 2.0 − 12.0,

lr = 0.2− 0.7, with Ca = la = 1.0. Averaging was carried out over 200 simulated

trials, yielding the numerical results (circles); the theoretical results of Eq. 3.6

with the best fitting τ are shown as a line. The number of agents N = 16, and

Dopt ≈ 8.
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Figure 3.5: Sensing configurations for the case when 4 or more agents are required

to sense the target before it can be detected. (a) Though there is overlap between

the swarm and target, too few agents can sense the target for it to be detected.

(b) The largest inter-agent distance l while still allowing for detection, l = rs.
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Figure 3.6: When rs is too small compared to D, the swarm does not detect

the target. The snapshots (a)-(d) show the swarm flying over the target without

locating it. Here N = 24, rs = 1.5, required percentage for consensus is p = 25%,

and D stabilizes at ≈ 13.5.
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3.2.3 An Approximation for the Optimal Swarm Diameter

Now that we have an upper bound on Dopt, we assume that condition (3.2) is met

and look for approximate expressions for Dopt and T̄ . We note that the area of

overlap Ao between the target and swarm areas, when the centers are separated

by a distance d, is given by

Ao = r2
s arccos

[
z

rs

]
+
D2

4
arccos

[
2(d− z)

D

]
−

z
√
r2
s − z2 − (d− z)

√
D2/4− (d− z)2 , (3.3)

where

z ≡ r2
s −D2/4 + d2

2d
. (3.4)

Eq. 3.3 is valid for |rs−D/2| ≤ d ≤ rs +D/2. Now, as above, we require that Ao

be at least equal to 25% of the swarm area in order for the target to be detected.

Thus, we obtain an implicit equation for the maximum separation dmax between

the center of the swarm and the target location such that the target is detected:

Ao(rs, D, dmax) = πD2/16 . (3.5)

The parameter dmax will depend therefore upon rs and D. At least in terms of

the time spent within the searching phase of the algorithm, the shortest time T̄

until detection ought to occur when, for a given rs, D is chosen such that dmax

is maximized (see Fig. 3.7), giving the largest effective target size to hit; hence

this D should be Dopt. Furthermore, we expect a scaling law such that the time

to detection is roughly given by

T̄ ≈ τ

[
Afield

πd2
max

− 1

]
, (3.6)

where τ is a characteristic timescale and Afield is the total area of the search field.
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Figure 3.7: Parameter dmax versus D for rs = 3.0. Note that dmax increases at

first, as the growing size of the swarm allows it to be further away while still

easily satisfying (3.2). However, after the peak at Dopt ≈ 8, the condition (3.2)

becomes the limiting factor, requiring greater overlap between the two areas for

detection to occur.
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We have experimentally verified this scaling, with numerical results usually

quite close to the theoretical values, as illustrated by the example with rs = 3.0

in Fig. 3.4. We note that the actual time to detection is a bit above the theory

for D > Dopt, presumably due to our assumption of constant density in deriving

Eq. 3.5; that is, (especially for large D) the area of overlap between target and

swarm may be sufficient, but still not contain at least 25% of the agents, causing

the time to detection to be above that expected.

3.3 Concluding Remarks

We considered a mine counter-measure scenario using multiple agents that move

cooperatively via swarming. The agents use a variety of signal filters to determine

when they are within sensing range of a target and to reduce noise for more

accurate control and position estimation of targets. We explored the parameter

space through simulations, determining optimal values for some of the search

parameters. We derived scaling properties of the system, compared with the

data from simulations, and found a good experimental-analytical fit.

There are many openings for future research. First, we could use alternate

methods in some parts of the algorithm. A potential change is to use a compressed

sensing method [COS09] instead of least-squares for estimating a target’s location,

which would enable us to find multiple overlapping targets at the same time.

Another interesting modification would be to use an anisotropic Lévy search,

and take previously covered paths into account. Different scenarios could also

be evaluated, which might lead to different results for accuracy and efficiency,

or even suggest using new algorithms. For example, we could extend the two

dimensional problem to 3-D, as would be the case for underwater targets. Or,

perhaps the model for the detected signal is unknown, in which case we would
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employ a different method to estimate the target positions. Finally, apart from

numerical simulations, we plan to do experiments on a real testbed, with small

robotic vehicles as agents. This would provide an evaluation of the algorithm in

the presence of real sensor noise, which may not be entirely Gaussian in nature.
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Part II

Diffuse interface surface tension

models in an expanding flow
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CHAPTER 4

Introduction to the Surface Tension Models

4.1 Background

There is a need to develop simple computational models for surface tension in

the droplet breakup phenomena. As an example, consider a piece of material

that expands under a sudden pulse of energy that comes from laser fusion [Ka10]

or heavy ion fusion [Fa08]. The material will breakup, and surface tension plays

an important role in the ensuing dynamics. There are many numerical methods

that deal with surface tension in two-phase fluids. This problem is known for its

computational stiffness. It contains two different time scales, the small surface

tension time scale and the convection time scale. Three main algorithms exist for

two-phase fluids. The sharp interface method tracks the interface explicitly, yet it

requires extensive processing when the interface splits and merges. Since droplet

breakup involves mainly merging and splitting of the interface, we do not consider

sharp interface methods in this chapter. The level-set algorithm uses a implicit

surface function to track the boundary. The diffusive interface algorithm uses

a phase variable to describe the transition between materials. These algorithms

have been studied theoretically and numerically with many variants. For some

previous results, see Fig. 4.1 through 4.3

The basic level-set model for two immiscible fluids uses a function φ, where

φ = 0 denotes the boundary between the two fluids. Among the first to propose
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this model is [SSO94], which combines the Navier-Stokes equation for two fluids

with a force at the interface.

ρ
∂~V

∂t
+ (~V · ∇)~V = −∇p+∇ · (2νD)− τκ(φ)∇H(φ) + f. (4.1)

This equation is then coupled with the level set equation for the interface:

φt +∇ · (φ~V ) = 0. (4.2)

In this model, ~V is the velocity field, D is the deformation tensor 1
2
(∇~V +∇~V T )−

1
3
∇~V I, p is the pressure and f denotes external force. These parameters are the

same as the original Navier-Stokes model. κ(φ) = ∇ · ∇φ|∇φ| is the curvature of the

boundary, τ is the surface tension coefficient, and H is the Heaviside function,

or in the numerical implementation, a smoothed Heaviside function. (4.1) is

the Navier-Stokes equation with a surface tension term κ~nδ(d), where ~n is unit

outward normal vector at the front, d is normal distance to the front, and δ is the

Dirac delta function. Recent models are designed to improve computational speed

[SSH07, SO09]. The level-set model can be naturally modified for a compressible

flow, with the price of a more complicated set of equations, e.g. [CFA01].

The original Cahn-Hilliard equation [CH58], together with the Allen-Cahn

equation are one of the most well-known dynamic models for diffuse interface

dynamics associated with surface energies. The Cahn-Hilliard equation can be

written as an H−1 gradient descent for a Ginzburg-Landau free energy E(u):

ut = ∆(
δE(u)

δu
) + λu, (4.3)

where

E(u) =

∫
(ε|∇u|2 +

1

ε
g(u)), (4.4)

and g(u) is a double-well potential that characterizes the two phases. It is nor-

mally taken as an even-order polynomial, for example

g(u) = u2(1− u)2, (4.5)
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in which case f(u) = g′(u) = 2u(1 − u)(1 − 2u). The Allen-Cahn equation,

on the other hand, is L2 gradient descent for the same energy. Papers such as

[Peg89, ABC94, CS06] analyze the convergence and stability of the Cahn-Hilliard

equation.

The combination of Cahn-Hilliard dynamics and fluid mechanics give rise

to several related models for fluid interfaces. For example, the incompressible

Navier-Stokes-Cahn-Hilliard model [BJO96, Boy99, Jac99, KKL04, YFL05] cou-

ples the incompressible fluid mechanics with a diffuse interface model.

ρ(
∂~V

∂t
+ (~V · ∇)~V ) = −∇p+∇ · (2νD)−∇ · (ερ∇u⊗∇u) + f, (4.6)

∇ · ~V = 0, (4.7)

ρ(
∂u

∂t
+ ~V · ∇u) = ∆K(u), (4.8)

K(u) =
∂g(u)

∂u
− 1

ρ
∆u. (4.9)

The ∇ · (ερ∇u ⊗ ∇u) term in (4.6) represents surface tension. The additional

advection term represents the mechanics of fluid flow.

One can modify the above model to include compressible fluids by replacing

equation (4.7) with
∂ρ

∂t
+ ~V · ∇ρ = 0, (4.10)

see [LT98, AF08, FPR10]. Other models include [PPD94], which proposes the

Cahn-Hilliard type model under a gravitational field. The Allen-Cahn model

with a transport term has been studied in [LST10] in the context of the sharp

interface limit yielding motion by mean curvature plus a transport term.

It should be noticed that the level-set model and the Cahn-Hilliard model

have mathematical relationships. When ε → 0, the Ginzburg-Landau energy

(4.4) Γ-converges to the surface energy
∫
|∇u|, which can be considered as the

surface tension related energy in the level set model [KS89, CS06, LGB07].
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In this chapter, we focus on the movement of a small droplet of incompressible

material within another compressible fluid. It is an important model problem for

a full-scale numerical simulations for material breakup. We take a simpler model

to that of the compressible Navier-Stokes-Cahn-Hilliard model [AF08]. Instead

of having the velocity field satisfying a Navier-Stokes equation, we consider the

same model under a specified velocity field which may not be divergent free, and

focus on the droplet breakup phenomena.

In the next section we present the specific models, namely the Cahn-Hilliard

equation with advection and Allen-Cahn equation with advection. Section 3 an-

alyzes the basic property and droplet breakup condition of the Cahn-Hilliard

equation with advection. Section 4 analyzes the Allen-Cahn equation with ad-

vection. Section 5 shows numerical simulation results for both models.

4.2 The Model Problem

We consider the following model for a diffusive interface with advection [LT98],

ut +∇ · (u~V ) = F(u), (4.11)

where ~V is the prescribed external flow field and F(u) represents the surface

tension force. When ~V = 0, we obtain the original diffuse interface equation. Our

main interest is when ~V is expanding, or problems in which ∇· ~V 6= 0 in general.

We note that the incompressible case is well studied, however the compressible

case less so. For simplicity we choose the Neumann condition ∂u
∂n

= 0 on ∂Ω.

All the models considered in this chapter are of the form (4.11) with the F term

related to Ginzburg-Landau energy (4.4).
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4.2.1 The advective Cahn-Hilliard equation

The original Cahn-Hilliard equation comes from a phase separation problem. It

is a non-local Mullins-Sekerka flow for E(u) [Gra89, Peg89, ABC94] .

F(u) = ∆(
δE(u)

δu
). (4.12)

Thus, the equation can be written as

ut +∇ · (u~V ) = ∆K(u), (4.13)

where

K(u) = −ε∆u+
1

ε
f(u). (4.14)

4.2.2 The advective Allen-Cahn equation

In the Allen-Cahn equation, the surface tension term is a mean curvature flow

for the energy E(u). Thus, the equation can be written as

ut +∇ · (u~V ) = −K(u), (4.15)

with the same K as in (4.14).

4.2.3 The advective Allen-Cahn equation with mass conservation

If we integrate the original Allen-Cahn equation, we can see that it does not

automatically conserve mass. Thus, an additional term λ is often added to the

equation for this reason [RS92]. We can add a similar term here, but we would

like to add λu instead of λ to keep u localized. The equation can be written as

ut +∇ · (u~V ) = −K(u) + λu, (4.16)

where λ is chosen so that
∫

Ω
u is a constant M . Or, as we can compute,

λ =

∫
Ω
K(u)

M
= −1

ε

∫
Ω
f(u)

M
. (4.17)
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These three equations are the main focus of this chapter. From now on we call

them the advective Cahn-Hilliard equation, the advective Allen-Cahn equation

and the advective nonlocal Allen-Cahn equation, respectively.

Properties of ~V play an important role here. In papers like [Boy99, KKL04],

the velocity field satisfies a Navier-Stokes equation, thus the velocity field ~V is

divergent free. In the situation of our main concern, ~V is not divergent free. The

flow is expanding where ∇ · ~V > 0 and contracting where ∇ · ~V < 0.

Unlike their nonadvective counterpart, mass conservation is not automatically

satisfied in these advective equations. For example, if we integrate (4.13), we

would have

(

∫
Ω

u)t +

∫
∂Ω

u~V · ~n =

∫
∂Ω

∇K(u) · ~n. (4.18)

Under Neumann boundary condition, the right hand side become 0. Only when

we exert a no-flow condition ~V · ~n = 0 on the boundary can we have mass

conservation. In fact, this no-flow condition would simplify many proofs below.

We assume this is satisfied by having a small layer of ~V that vanishes near the

boundary. We also assume ~V is smooth enough in the following arguments.
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Figure 4.1: Up: Experiment result of a liquid/liquid thread undergoing Rayleigh

instability. Left: Numerical simulation using sharp interface method, both from

[TSO92] copyright 1992 Cambridge University Press, reproduced with permis-

sion. Right: Numerical simulation using diffuse interface method, from [KKL04],

copyright 2004 Elsevier, reproduced with permission.
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Figure 4.2: A level-set simulation of air bubble bursting at surface, from [SSO94],

copyright 1994 Elsevier, reproduced with permission.

Figure 4.3: A diffuse interface simulation on two drops collide, from [YFL05],

copyright 2005 Elsevier, reproduced with permission.
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CHAPTER 5

Analytical Properties of the Model Problem

5.1 Property of the advective Cahn-Hilliard equation

In this section we prove basic properties of the advective Cahn-Hilliard equation.

We begin with the existence and uniqueness property of the equation, then move

on to the analysis of the breakup condition.

5.1.1 Existence and uniqueness

The following existence and uniqueness theorem is similar to that of the original

Cahn-Hilliard equation [Tem88]. In the proof below and related arguments, the

symbol C denotes a generic constant.

Theorem 5.1.1 If g(u) in (4.4) is a polynomial of order 2p, for every given u0

in L2(Ω), the equation (4.13) with u(0) = u0 has a unique solution u that belongs

to C([0, T ];L2(Ω)) ∩ L2(0, T ;H2
0 Ω) ∩ L2p(0, T ;L2p(Ω)),∀T > 0.

The proof for this theorem follows the same step as the Galerkin method

for proving other equations like the Navier-Stokes equation and original Cahn-

Hilliard equation, with the only difference in the a priori estimate. See [Tem95,

Tem88]. We only present the different a priori estimates here.
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The weak form of (4.13) is

(u′(t), w) + εA(u,w) +B(~V , u, w) +
1

ε
(f ′(u)∇u,∇w) = 0, ∀w ∈ H2(Ω), (5.1)

where A(u,w) = (∆u,∆w), B(~V , u, w) =
∫

Ω
∇ · (u~V )w.

Taking w = u we have

1

2

d

dt
|u|2 + ε|∆u|2 +

1

ε
(f ′(u)∇u,∇u) +

1

2
(|u|2,∇ · ~V ) = 0. (5.2)

Since f ′(s) ≥ b2ps
2p−2 − C,

1

2

d

dt
|u|2 + ε|∆u|2 +

1

ε

∫
Ω

(b2pu
2p−2|∇u|2) ≤ C|∇u|2 +

C

2
|u|2. (5.3)

Thus we can get the upper bound for u in L2(0, T ;H2(Ω)). To get the upper

bound of u in L∞(0, T ;L2(Ω)), we see that

C|∇u|2 ≤ C|u| ‖u‖H2(Ω)

≤ C|u|(|∆u|+M)

≤ ε

2
|∆u|2 + C|u|2 + CM2,

(5.4)

where M =
∫

Ω
u is the total mass. Thus,

d

dt
|u|2 + ε|∆u|2 +

∫
Ω

(b2pu
2p−2|∇u|2) ≤ C|u|2 + CM2. (5.5)

The rest of the proof are similar to [Tem95, Tem88]. By using the Gronwall

inequality we get an upper bound for u in L∞(0, T ;L2(Ω)). This suffices to show

the continuity and uniqueness.

5.1.2 Energy estimate

The original Cahn-Hilliard equation has an energy term that serves as a Lyapunov

function:

J(u) =

∫
Ω

ε

2
|∇u|2 +

1

ε
g(u). (5.6)
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This term can be estimated by multiplying K(u) on both sides of (4.13) then

integrate by parts. Following the same pattern, we get

J(u)t + (∇ · (u~V ), K(u)) = −|∇K(u)|2. (5.7)

We can estimate the new term by

(∇ · (u~V ), K(u)) = (~V · ∇u,K(u)) + ((∇ · ~V )u,K(u)). (5.8)

The first term

(~V · ∇u,K(u)) = −(∇ · ~V , ε
2
|∇u|2 +

1

ε
g(u))− ε

∫
Ω

(∇u)T∇~V∇u, (5.9)

due to the fact that∫
Ω

~V · ∇u∆u =

∫
Ω

~V · (∇ · (∇u⊗∇u)− 1

2
∇(|∇u|2))

=

∫
Ω

−∇~V : (∇u⊗∇u) +
1

2
∇ · ~V |∇u|2

=

∫
Ω

−(∇u)T∇~V∇u+
1

2
∇ · ~V |∇u|2.

(5.10)

The right-hand side of (5.9) is bounded from below by −2||∇~V ||L∞J(u).

The second term of (5.8) is bounded by

((∇ · ~V )u,K(u)) ≥ −ε(1

2

∫
u2∆∇ · ~V −

∫
|∇u|2∇ · ~V )− ||∇ ·

~V ||L∞
ε

∫
|uf(u)|

≥ −C(J(u) + |u|22).

(5.11)

Putting everything together, we have

J(u)t ≤ C(J(U) + |u|22), (5.12)

which, using Gronwall’s inequality and the bound of |u|22 above gives

J(u)t ≤ exp(Ct)J(u0) + C. (5.13)

We can see that, the energy of u is bounded at every finite time interval [0, T ]

and increases at most exponentially.
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5.1.3 Droplet breakup

When the the external flow field is sufficiently large, the advective Cahn-Hilliard

model exhibits droplet breakup as illustrated in Fig. 5.1. Similar phenomenon

have been observed in numerous reaction-diffusion systems, see for example [NU99],

[KWW07], [KO94] and references therein. In this section we perform a detailed

study of the breakup phenomenon for the advective Cahn-Hilliard model in one

dimension. We recall that the one dimensional case of (4.13) is:

ut + (V (x)u)x = Kxx; K = −εu′′ + 1

ε
f(u). (5.14)

We choose a specific form of f(u) in our discussion:

f(u) = 2u(1− u)(1− 2u). (5.15)

Other forms of f(u) follow a similar discussion. In [NU99], Nishiura and Ueyema

proposed a set of conditions for the occurrence of self-replication in reaction-

diffusion models. Roughly stated, they are are:

1. The disappearance of the steady state due to a fold-point (or saddle-node)

bifurcation.

2. The existence of the so-called dimple-eigenfunction at the threshold, which

is responsible for the initiation of the breakup process.

3. The steady state is stable on one side of the fold point and is unstable on

the other.

The importance of these conditions is that the breakup of a droplet can be

understood in terms of the analysis of the steady state solution of (5.14) which

satisfies

(V (x)u)x = Kxx; K = −εu′′ + 1

ε
f(u). (5.16)
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The breakup analysis for (5.14) is very similar to [KWW07] where the Brusselator

and other reaction-diffusion systems having mesa-type structures were shown to

exhibit self-replication. For simplicity, we will only consider a special case

V (x) =
V0

ε
x, (5.17)

and get the following asymptotic result:

Result 5.1.2 Consider (5.14) in the limit ε� 1, with V (x) given by (5.17), and

with even initial conditions for u. For a given mass M =
∫∞
−∞ udx, let

Vc =
Vc0
M2

(5.18)

where Vc0 ≈ 1.326 is a constant whose precise value is given below in (5.31). If

V < Vc then there exists a steady state u(x, t) = u(x) in the form of a droplet. If

V > Vc, no such steady state exists. As V is slowly increased past Vc, the dropet

will split in the middle and breakup into two droplets.

The derivation of this result consists of an analytic verification of the Nishiura-

Ueyema conditions 1 and 2. Due to space limitations, we omit the verification of

Condition 3 but refer the reader to [KWW07] where this condition 3 is proved

for a similar model.

Verification of Nishiura-Ueyema condition 1. We seek a steady state

solution u(x) which is even. It then follows that K is also even and upon inte-

grating (5.16) on the interval [0, x], we obtain

Kx =
V0

ε
xu.

We now change variables K = 1
ε
w to obtain a system

wx = V0xu; −ε2uxx + f(u) = w. (5.19)
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Figure 5.1: Snapshots of temporal dynamics of (5.16) with V given by (5.17).

Here, ε = 0.01 and the mass of the droplet is taken to be M =
∫∞
−∞ udx = 0.8.

The parameter V0 is slowly increased in time according to the formula V0 = 0.001t.

Since we assumed that u is even, we consider only the half-line x ≥ 0; the

boundary conditions become

u′(0) = 0 = u′(∞);

∫ ∞
0

u = M/2 (5.20)

where M is a given total mass of u. Since the time-dependent PDE (5.14) con-

serves the mass of u, M is also the initial mass of u(x, t) at t = 0.

We will construct a solution to (5.19, 5.20) for which u(x) has a sharp interface

located at some position x = l > 0 with u ∼ 0 for x > l. Some typical such profiles

for u(x) are shown in Fig. 5.2. Such a solution has a transition layer consisting of

the interface near x = l and an outer region to the left of x = l. In the transition

layer, we rescale the space variable

x = l + εy; u(x) = U(y); w(x) = W (y)

to obtain

Wy ∼ ε2V0yU.
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Figure 5.2: The bifurcation structure of the the steady state equations (5.19,5.20)

with ε = 0.01, M = 0.8; V0 is plotted vs. u(0). Solid curve represents the solution

to the full system numerically; the dotted curve is the asymptotic formula (5.29).

The coordinates of the fold point are u(0) = 0.79, V0 = 2.18. The inserts show

the profile of u(x) for selected points along the bifurcation curve as indicated.

To leading order, we have Wy ∼ 0 so that W ∼ W0 is constant. We then obtain

an ODE for U,

Uyy + f(U)−W0 = 0. (5.21)

The interface corresponds to a heteroclinic orbit of the ODE (5.21) which connects

the two saddle equilibria of (5.21). Such heteroclinic connection exists if and

only if
∫ U+

U−
[f(U)−W0] dU = 0, where U± are the equilibria points that satisfy

f(U±) −W0 = 0 with U+ 6= U−. Using f(u) = 2u(1 − u)(1 − 2u), this yields

U+ = 1, U− = 0 and W0 = 0; the explicit solution for U(y) is then given by

U(y) =
1

2

(
1− tanh(y/

√
2)
)
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with

U(+∞) = 0; U(−∞) = 1.

In the outer region away from the interface, to leading order we have

f(u) ∼ w, 0 ≤ x < l. (5.22)

Substituting (5.22) into (5.19) we then obtain

du

dx
= xV0

u

f ′(u)
; u(l) = 1. (5.23)

The boundary condition is obtained from matching to the outer solution, u(l) =

U(−∞) = 1. The solution to (5.23) is given by

V0

2
x2 =

∫ u

u0

f ′(s)

s
ds; x < l (5.24)

where u0 = u(0). Thus we obtain the following relationship between l and u0,

V0

2
l2 = G(u0) (5.25)

where

G(u0) :=

∫ 1

u0

f ′(s)

s
ds = −6u2

0 + 12u0 − 2 lnu0 − 6.

It remains to relate l to M. Since u ∼ 0 to the right of the interface, the mass

of u is asymptotically given by

M

2
∼
∫ l

0

u(x)dx (5.26)

where we ignored the O(ε) contribution to the mass from the interface. Writing

(5.24) as

x2 =
2

V0

(G(u0)−G(u))
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and substituting into (5.26) we obtain

M

2
∼
(

2

V0

)1/2 ∫ 1

u0

u
d

du

√
G(u0)−G(u)du (5.27)

∼
(

2

V0

)1/2{√
G(u0)−

∫ 1

u0

√
G(u0)−G(u)du

}
. (5.28)

so that

V0 ∼
1

M2
8

(√
G(u0)−

∫ 1

u0

√
G(u0)−G(u)du

)2

. (5.29)

Next, note that G(1) = 0 and G′(u0) = −f ′(u0)/u0; in particular G(u0) attains

a maximum at um which satisfies f ′(um) = 0:

um :=
3 +
√

3

6
= 0.78868. (5.30)

It follows that the solution to the outer problem (5.23) only exists if um < u(0) <

1. In terms of M , the critical threshold for existence is obtained by substituting

u0 = um into (5.29); namely Vc = Vc0
M2 where the constant Vc0 is given by

Vc0 := 8

(√
G(um)−

∫ 1

um

√
G(um)−G(u)du

)2

≈ 1.32606. (5.31)

This shows the existence of the fold-point for V0 as given by Result 5.1.2.

Verification of Nishiura-Ueyema condition 2. Here, we follow closely

an analogous derivation in [KWW07]. The key is to demonstrate that when V0

is close to the threshold value Vc, an additional boundary layer in the shape of

an inverted spike forms at the center of the droplet. To see this, suppose that V0

is sufficiently close to Vc so that near x = 0, we may expand

u(x) ∼ um + δu1(x), w ∼ f(um) + δ2w1 + ...; δ � 1. (5.32)

The small parameter δ will be related to ε below. The equation for w1 then

becomes

δ2w1x ∼ V0xum
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Figure 5.3: Right side: Bifurcation diagram A vs. U(0) for the core problem

(5.41). Solid curve is the numerical solution to (5.41); dashed lines represent the

asymptotics for large A as given by (5.43,5.42). Left: the solution profiles with

U(0), A as indicated.

so that

w1(x) ∼ w1(0) + δ−2V0um
2

x2. (5.33)

The consistency condition for (5.33) is that x/δ �∞; this will be satisfied below.

We now expand in Taylor series

f(u)− w ∼ −w1(0)δ2 − V0um
2

x2 + u2
1

f ′′(um)

2
δ2 (5.34)

where we recall that f ′(um) = 0. Substituting (5.33, 5.34) into (5.19) we obtain

ε2u1xx − u2
1

f ′′(um)

2
δ2 + w1(0)δ2 +

V0um
2

x2 = 0. (5.35)

To determine the right scaling for δ, rescale

x = αz, u1(x) = U(z)
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so that (5.35) becomes

Uzz −
(
f ′′(um)

2

δ2α2

ε2

)
U2 +

(
V0um

2

α4

ε2

)
z2 + w1(0)

δ2

ε2
α2 = 0 (5.36)

We now choose α, δ so that (5.36) becomes

Uzz = U2 − z2 − A (5.37)

i.e.

α := ε1/2

(
V0um

2

)−1/4

; δ := ε1/2

(
V0um

2

)1/4(
f ′′(um)

2

)−1/2

(5.38)

A :=
2w1(0)

f ′′(um)
. (5.39)

Matching with the outer solution, in the limit z → ∞ we impose the bound-

ary condition uxxε
2 � 1; or Uzz ∼ 0. Thus the boundary conditions for (5.37)

becomes

Uz(0) = 0; U ∼ z as z →∞. (5.40)

The equations (5.37) and (5.40) together comprise the core problem which fully

describes the growth of the inverted spike at the origin. The scaling α = O(ε1/2)

quantifies the width of the the core spike in terms of the O(ε) interface width.

This core problem is identical to the core problem for the Brusselator and other

reaction-diffusion systems; we refer the reader to [KWW07] for details. For con-

venience, we state the main result about (5.37, 5.40) as derived in [KWW07]:

Lemma 5.1.3 (from [KWW07], Theorem 2) Consider the core problem

Uzz = U2 − z2 − A; Uz(0) = 0; U ∼ z as z →∞. (5.41)

There exists a constant Ac such that (5.41) has precisely two monotone solutions

for A > Ac and no monotone solutions when A < Ac.
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Figure 5.4: The shape of the the eigenfunction corresponding to the zero

eigenvalue at the fold point of the bifurcation diagram for (5.19,5.20) with

ε = 0.01, M = 0.8. The parameter V0 = 2.18 is chosen to be at the fold

point.

When A� 1, equation (5.41) admits two monotone solutions U±(z) with the

following uniform asymptotic expansions:

U+(z) ∼
√
A+ z2, with U+ (0) ∼

√
A; (5.42)

U−(z) ∼
√
A+ z2

(
1− 3 sech2

(
A1/2z√

2

))
, with U+ (0) ∼ −2

√
A; (5.43)

For any monotone solution of (5.41), let s = U(0) and consider the curve

A = A(s). Then A(s) has a unique (minimum) critical point at s = sc, A = Ac.

Moreover, define

Φ(z) =
∂U(z; s)

∂s
|s=sc .

Then Φ (z) > 0 for all z ≥ 0 and Φ → 0 as z → ∞. Numerically, Ac =

−1.46638, sc = −0.61512.

The bifurcation diagram of A vs. U(0) and some steady states is given by Fig.

5.3.

In particular, the profile U− describes the shape of the finger within the

boundary layer at the center of the droplet, which is responsible for the initiation

of the splitting process. Similarly as was shown in [KWW07], the linearized
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problem at the fold point has a zero eigenvalue; the corresponding eigenfunction

is given by φ = ∂u/∂ [u(0)]. Moreover,
∫
φ = 0 due to mass conservation. As

explained in [KWW07], it follows from Lemma 5.1.3 that φ has precisely one

positive root; its profile is shown in Fig. 5.4. This proves that criterium 2 of

Nishiura-Ueyema conditions is satisfied. This concludes the derivation of our

result.

We use two methods to verify the droplet breakup condition from Result

5.1.2. We take ε = 0.01 and we let V0 to be a slowly varying parameter in time,

according to the formula V0 = 0.001t. Using the initial condition

u(x, 0) =
1

2

(
1− tanh

(
|x| − 0.4

0.01
√

2

))
(5.44)

we then compute numerically the solution to the full system (4.13). Droplet

breakup is observed at about t = 1982 or V0 ≈ 1.982 as shown in Fig. 5.1. The

initial conditions (5.44) correspond to M = 0.8. The formula (5.18) for Vc then

yields Vc = 1.32606
0.82

= 2.07, which compares favorably with the numerical result.

Next, we computed the bifurcation diagram of the steady state (5.19, 5.20);

this is shown in Fig. 5.2. To compute such diagram, we gradually changed

u(0) from 1 down to 0.5; then for each given u(0), we used Maple’s numerical

boundary value problem solver to compute for the corresponding value of V0.

In this way, the fold point was found at u(0) = 0.79, with the corresponding

V0 = 2.18. This agrees very well with the asymptotic result Vc = 2.07 as well as

(5.30) um = 0.7887.

5.2 Property of the advective Allen-Cahn equation

In this section we prove the existence, uniqueness and maximum principles for the

advective Allen-Cahn equation and the advective nonlocal Allen-Cahn equation.
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The maximum principle shows that the droplet breakup will not appear in many

cases.

5.2.1 Existence and uniqueness

The existence and uniqueness for the advective Allen-Cahn equation can be done

similarly to that of the advective Cahn-Hilliard equation. However, a different

method has to be used for the advective nonlocal Allen-Cahn equation with mass

conservation due to the extra nonlocal term. A semigroup method is used to

show finite time existence of the solution, then a maximum principle analysis

gives the bound of the λ in the non-local term.

Theorem 5.2.1 For dimension n = 1, 2, 3, if g(u) in (4.4) is a polynomial of

order 2p. then (4.15) and (4.16) with initial value u0 ∈ W
3
2
,2(Ω) has a unique

solution u ∈ C1([0, T ];C2(Ω)), ∀T > 0.

The proof contains two parts. The first part follows a similar process that

is used in [Bal77, Hen81], which involves using the following propositions from

them.

Proposition 5.2.2 Consider the equation

ut = Au+N(u) (5.45)

where A is the generator of a holomorphic semigroup S(t) of bounded linear op-

erators on a Banach space X. Suppose that ||S(t)|| ≤ M0 for some constant

M0 > 0 for all t > 0. Under these hypotheses the fractional powers (−A)−α can

be defined for 0 ≤ α < 1 and (−A)α is a closed linear operator with domain

Xα =Domain((−A)α) dense in X. Let N(u) be locally Lipschitz, i.e. for each
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bounded subset of U there exists a constant CU such that

||N(u1)−N(u2)|| ≤ CU ||u1 − u2||α, ∀u, v ∈ U, (5.46)

then given u0 ∈ X, there exists a finite time interval [0, t) and a unique solu-

tion u with u(0) = u0 on the time interval and the solution can be continued

uniquely on a maximal interval of existence [0, T ∗). Moreover, if T ∗ < ∞ then

limt→T ∗ ||u(t)||α =∞.

Proposition 5.2.3 Assume A and N same as above, suppose u is a solution of

the equation on (0, T ], then if γ < 1, t→ ut(t) ∈ Xγ is locally Holder continuous

for t ∈ (0, T ], with ||ut||α ≤ Ctα−γ−1.

Lemma 5.2.4 Assume A and N same as above, if ||N(u)|| ≤ C(t)(1 + ||u||α),

then the unique solution exists for all times.

In (4.16), we can take A = ε∆ on domain of H2(Ω) functions with Neumann

boundary condition, 1 > α > 3
4
, X = L2(Ω) and

N(u) = −∇ · (u~V )− 1

ε
f(u) + λu. (5.47)

We have Xα ⊃ W
3
2
,2(Ω) ∩ L∞(Ω). Thus, we can estimate the three terms of

N(u1)−N(u2) individually.

||∇ · (u1
~V )−∇ · (u2

~V )||L2 ≤ ||~V ||L∞||∇u1 −∇u2||L2 + ||∇ · ~V ||L∞||u1 − u2||L2

≤ C||u1 − u2||H1

≤ C||u1 − u2||Xα .

(5.48)

Since f is a polynomial of order 2p− 1 we have

f(u1)− f(u2) = (u1 − u2)h(u1, u2), (5.49)
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where h is a polynomial of order 2p− 2.

||f(u1)− f(u2)||L2 ≤ ||u1 − u2||L2||h(u1, u2)||L∞

≤ C||u1 − u2||L2(||u1||2p−2
L∞ + ||u2||2p−2

L∞ )

≤ C||u1 − u2||Xα(||u1||2p−1
Xα + ||u2||2p−1

Xα ),

(5.50)

and

||u1

∫
Ω

f(u1)− u2

∫
Ω

f(u2)||L2

≤ ||u1||L2||f(u1)− f(u2)||L1 + ||u1 − u2||L2||f(u2)||L1

≤ ||u1 − u2||L1||u1||L2||h(u1, u2)||L∞ + C||u1 − u2||L2||u2||2p−1
L2p−1

≤ C||u1 − u2||Xα||u1||L∞(||u1||2p−2
L∞ + ||u2||2p−2

L∞ ) + C||u1 − u2||Xα||u2||2p−1
L∞

≤ C||u1 − u2||Xα||(||u1||2p−1
Xα + ||u2||2p−1

Xα ).

(5.51)

We can apply proposition 5.2.2 from here and get a unique solution in u ∈ D(A).

Then, since ∇u ∈ W 1,2(Ω) ⊂ L6(Ω), we have Au = N(u) − du
dt
∈ L6(Ω). This

implies ∇u ∈ W 1,6(Ω), which is Holder continuous. This in turn shows u ∈

C2+δ(Ω) for some δ > 0. The local Lipschitz condition for (4.15) is similar.

This proposition shows a maximum interval of existence [0, Tmax) for the ad-

vective Allen-Cahn equations. To show global existence, we need maximum prin-

ciple below to show a bound for λ and f(u), then we can directly apply lemma

5.2.4 using the fact of

||∇ · (u~V )||L2 ≤ C||u||H1 ≤ C||u||Xα . (5.52)

5.2.2 Maximum principle analysis

The maximum principle-like analysis works only for the advective Allen-Cahn

equation, since it is second-order and parabolic. The advective Cahn-Hilliard
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equation, on the other hand, is of fourth-order thus does not possess the maximum

principle.

Theorem 5.2.5 For equation (4.15) with any velocity field, or (4.16) with ex-

panding flow ∇· ~V ≥ 0, there exists a value uM such that, if initial value u0(x) ∈

[0, uM ] in Ω and satisfies the condition of theorem 5.2.1, then u(x, t) ∈ [0, uM ] for

all t. For (4.16) with a general flow, 0 ≤ u(x, t) ≤ max(exp(− inf(∇· ~V )t), 1)uM .

If we set û(x, t) = expξt u(x, t), then (4.15) becomes

ût = expξt(ε∆u−∇u · ~V − u∇ · ~V − 1

ε
f(u) + ξu), (5.53)

and (4.16) becomes

ût = expξt(ε∆u−∇u · ~V − u∇ · ~V − 1

ε
f(u)− λu+ ξu). (5.54)

For the advective Allen-Cahn equation (4.15), we can simply take ξ close to

0. Since g(u) is a double-well potential, f(u) < 0 when u < 0. We can deduce

that there is no interior negative minima. Similarly, there is no interior maxima

larger than 1. Thus, if the initial value is within [0,1], so is the solution.

For the advective nonlocal Allen-Cahn equation (4.16), it becomes a little

complicated. Within any time interval [0,T], λ is bounded, so we can take a

proper ξ in (5.54) to use the maximum principle. Thus, û has no negative minima

within any interval (0,T]. If initial value is nonnegative, so is the solution.

The positive side is more tricky. If u takes its maximum value umax on the

interior and ∇ · ~V ≥ 0, then on the point we have 1
ε
f(umax) + λumax < 0. On the

other hand, due to the definition of λ (4.17), we know that λ = −1
ε
f(u)
u

for some

u ∈ [0, umax]. This means that f(umax)
umax

< f(u)
u

for some u ∈ [0, umax]. Since f(u)
u
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is even-ordered polynomial, there exists an uM > 0 so that f(umax)
umax

≥ f(u)
u

for all

umax ≥ uM and u ≤ umax. Thus, if the initial value is smaller than uM , so is the

solution. For example, if we take double-well potential g(u) = u2(1 − u)2, then

uM = 1.5. For a general flow, we take ξ = inf(∇ · ~V ) in (5.54). With a similar

analysis, u ≤ uM when û takes its maximum, hence the result.

For the advective Cahn-Hilliard equation (4.13), the maximum principle anal-

ysis does not work. In fact, there are cases when it fails: the solution becomes

negative even when the initial value is not. See numerical results Fig. 6.3, Fig.

6.11 and Fig. 6.13.

In the simple 1D case, we can show the following fact:

Theorem 5.2.6 If u satisfies (4.15) or (4.16), u(x, 0) ≥ 0 and bounded, and

ux(x, 0) ≤ 0 on Ω, and Vxx(x) ≥ 0, then ux(x, t) ≤ 0 for all t.

Note that, if we expect a symmetric condition, i.e. V is odd and u is even,

and u(x, 0) takes its only maximum value at x = 0, then ux(0, t) = 0, and we

can apply this theorem on Ω∩ [0,∞). Thus for any t, u(x, t) takes the maximum

value at x = 0, and the droplet breakup does not occur.

To prove this, we see that (4.15) leads to

(ux)t = (ux)xx − V (ux)x − (2Vx + f ′(u))ux − Vxxu, (5.55)

and (4.16) leads to

(ux)t = (ux)xx − V (ux)x − (2Vx + f ′(u) + λ)ux − Vxxu. (5.56)

Since 2Vx + f ′(u) and λ are bounded, Vxxu ≥ 0, we can use a process similar

as above to show that no positive maximum can be achieved in the interior of Ω.

Thus ux(x, t) ≤ 0 for all t. When Vxx is not nonnegative, breakup may occur.

See Fig. 6.9 and Fig. 6.10.
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In higher dimensions, it is easy to consider the case of radially symmetric

data. General results require a more detailed analysis, but this analysis is suffice

to show that Allen-Cahn type equation is unsuitable for the model of droplet

breakup.

Theorem 5.2.7 If u satisfies (4.15) or (4.16) on a n-dimensional sphere around

0, u(~x, 0) ≥ 0, bounded and radially symmetric, and ur(~x, 0) ≤ 0 on Ω, where ur

is the directional derivative of u in the direction of ~x. Assume ~V (~x) = V (|~x|) ~x
|~x|

and r2Vrr(r) + (n − 1)rVr(r) − (n − 1)V (r) ≥ 0 for any r, then ur(~x, t) ≤ 0 for

all t.

We can prove this by taking w = rn−1ur, then (4.15) gives

wt = wrr−(
n− 1

r
−V )wr−(2Vr+f ′(u))w−rn−3(r2Vrr+(n−1)rVr−(n−1)V )u.

(5.57)

Using the same method as that of 1D case, we can show that no positive maxima

exist under given condition. Thus, w ≥ 0 for all ~x and t, which is equivalent as

ur ≥ 0. When n = 1, the condition on ~V would be the same as the 1D theorem

5.2.6.
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CHAPTER 6

Numerical Simulation for the Model Problem

6.1 Numerical Algorithm

In this section we present numerical simulation in 1,2 and 3D. We compare some

of the results with the theory from previous sections. Specifically, we focus on dif-

ferent behaviors when the strength of velocity field changes, and different droplet

breakup condition for different models. All our numerical results are consistent

with the theories in previous sections.

The Cahn-Hilliard equation poses numerical challenges due to the stiffness of

both the 4th-order term and the nonlinear term. Thus, many algorithms, both

linear and nonlinear, have been proposed to solve it, for example finite element

method [BBG98], and semi-implicit discretization [VR03, XT06, BJL10]. In this

chapter we apply a simple semi-implicit splitting scheme [VR03] on the fourth-

order term of the advective Cahn-Hilliard equation (4.13). It can be written

as

un+1 − un

∆t
+∇ · (un~V ) = −∆(ε∆(Aun+1 + (1− A)un)− 1

ε
f(un)), (6.1)

where the advection term is discretized by the upwind scheme. The parameter

A is chosen as 2 in the implementation. (4.15) and (4.16) are discretized as

un+1 − un

∆t
+∇ · (un~V ) = ε∆(Aun+1 + (1− A)un)− 1

ε
f(un) (6.2)
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and

un+1 − un

∆t
+∇ · (un~V ) = ε∆(Aun+1 + (1− A)un)− 1

ε
f(un) + λu (6.3)

respectively.

The stability condition now is related to ~V . For example, the graph of stability

of the advective Cahn-Hilliard equation related to time step ∆t and the maximum

norm of ~V is shown in Fig. 6.1. ∆x has some insubstantial effects on the stability,

but not so much as a CFL condition would require. In fact, the coefficient of un+1

is I+∆tε∆2, it is in the order of (∆x)−4 when ∆x is small. This is of a higher order

than the advective term ~V ·∇un, thus providing the main constraint for stability.

This stability condition with V = 0 is consistent with similar results for the plain

Cahn-Hilliard equations like [HLT07].Reference [BJL10] shows that a scheme of

this kind would have an error of O(C∆t), but the constant C would be very large.

With the additional advection term, C becomes related to Vmax = ||~V ||L∞ , thus

when Vmax increases, a smaller time step would be required. Moreover, when ~V

is not very large, the most important constraint on ∆t comes from the stability

of the original Cahn-Hilliard equation.

6.2 Numerical Result

6.2.1 1D result: the advective Cahn-Hilliard equation

We begin from the basic 1D case where u(x, 0) = χ[−α,α] and ~V = V0x. The value

of V0 is tuned to show different types of solutions. The parameter ε is taken to

be 0.01, and g(u) = u2(1− u)2. α is taken as 0.3. We run the simulation on the

interval [−5, 5] with 2048 grid points. The time step is taken to be ∆t = 2×10−6,

with 5000 time steps in total. The result of the advective Cahn-Hilliard equation

(4.13) contains two different types of solutions when ~V changes. When ~V is small,
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Figure 6.1: the Stability graph for the 1D advective Cahn-Hilliard equation. The

triangle shape indicate unstable case, the circle represents the stable case. The

X-axis and Y-axis represent the time step ∆t and the maximum value of velocity

field Vmax respectively.

the solution develops a dimple in the middle, then stops, and does not break up

further. When ~V is large, the solution eventually breaks up, and the smaller

droplets continue to move apart. See Fig. 6.2 and Fig. 6.3, which correspond to

V0 = 400 and V0 = 600 respectively. The threshold value of V0 is drawn on Fig.

6.4, depending on the initial size of the droplet. The curve is an inverse quadratic

curve of V0M
2 = 1.326, which fits the prediction of (5.18).
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Figure 6.2: The advective Cahn-Hilliard equation does not breakup

Figure 6.3: The advective Cahn-Hilliard equation breakup

6.2.2 1D result: the advective Allen-Cahn equation

As ~V increases, two different types of result appear for (4.15). When ~V is small,

the solution develops towards a constant given by the solution of V0u+ 1
ε
f(u) = 0.

When ~V is large and the above equation does not have a solution, the solution

expands and decreases towards zero. The threshold is not related to α at all. See

Fig. 6.5 and Fig. 6.6. Most numerical parameters are the same as that of the

Cahn-Hilliard case: α is taken as 0.3, the simulation is on the interval [−5, 5] with
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Figure 6.4: Threshold for Cahn-Hilliard. Dot is simulation data, line is an inverse

quadratic curve V0M
2 = 1.326.

2048 grid points. The difference is in the time step and the strength of velocity

field. In the graphs shown, the ∆t = 0.001, and the values of V0 are 10.0 and

30.0 respectively.

6.2.3 1D result: the advective nonlocal Allen-Cahn equation

Under the same setting, the advective nonlocal Allen-Cahn equation (4.16) has

two different types of results when V0 changes. The threshold value of V0 is listed

on Table 6.1. When Ω is smaller, these two thresholds also decrease. When

~V is small, the solution decreases and settles into a non-constant steady state
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Figure 6.5: The advective Allen-Cahn equation when V is small

Figure 6.6: The advective Allen-Cahn equation when V is large

depicting a single droplet. When ~V is large, the solution decays to a small

constant consistent with mass conservation. See Fig. 6.7 and Fig. 6.8. The
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Table 6.1: Threshold for the advective nonlocal Allen-Cahn equation

Value of α Threshold of V0

0.5 7

0.2 18

numerical parameters are the same as in the previous subsection. α is taken as 0.3.

The simulation is on interval [−5, 5] with 2048 grid points. Time step ∆t = 0.001,

and the values of V0 in the results shown are 10.0 and 30.0 respectively.

Figure 6.7: The advective nonlocal Allen-Cahn equation when V is small

This represents a typical Allen-Cahn solution that does not show droplet

breakup. The reason comes from the maximum principle, which was explained

in Theorem 5.2.5. However, if the initial value is non-monotone, things become

different. Even a small concavity at the origin leads to a completely different

evolution. In Fig. 6.9 we take ~V (x) = 5x, but initial value is taken as 1 in

[−0.5,−0.01) ∪ (0.01, 0.5], 0.99 in [−0.01, 0.01], and 0 otherwise. The solution

shows a breakup.

Another situation of droplet breakup involves a different velocity field ~V . Fig.

6.10 is the result for the case when V = V0(x− 1
100
x2) where x ≥ 0 and expanded

as an odd function to x < 0. Note that this velocity field does not satisfy the
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Figure 6.8: The advective nonlocal Allen-Cahn equation when V is large

Figure 6.9: The advective nonlocal Allen-Cahn equation when the initial value

have an insubstantial dent near the origin
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condition of theorem 5.2.6. See Fig. 6.10.

Figure 6.10: The advective nonlocal Allen-Cahn equation when V is not linear

6.2.4 2D result

Since the 1D case shows interesting results, it is natural to perform simulations

in higher dimensions where we have additional geometry. We tried two different

cases for 2D result, respectively under an expanding velocity field and a sheer

flow. The velocity field is prescribed as

~V (x, y) = (V0x, V0y) (6.4)

for the expanding case, and

~V (x, y) = (0,−V0x) (6.5)

for the sheer flow. The advective Cahn-Hilliard equation and the advective non-

local Allen-Cahn equation are both tested for these cases. For all cases, we solve
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the equation in the region [−1, 1]× [−1, 1] with 128× 128 mesh size. For the ex-

panding flow, we test two cases with different initial values. The initial value for

the first case is 1 on [−0.3, 0.3]× [−0.3, 0.3] and 0 otherwise. In the second case

the initial value is 1 on a circle of radius 0.3 and 0 otherwise. For the sheer flow,

the initial value is 1 on [−0.1, 0.1]× [−0.1, 0.1] and 0 otherwise. V0 is 2000 for all

the advective Cahn-Hilliard equation cases and 10 for all the advective nonlocal

Allen-Cahn equation cases. Time step is 1×10−6 for the advective Cahn-Hilliard

equation and 1× 10−4 for the advective Allen-Cahn equation. These parameters

are chosen to emphasize the difference in their breakup phenomena, see Fig. 6.11

to Fig. 6.16.

Similar to the 1D case, the advective Cahn-Hilliard equation has a droplet

breakup, while the advective nonlocal Allen-Cahn equation does not. Compar-

atively, the Cahn-Hilliard model show a surface tension based breakup while

Allen-Cahn model fails to do so in all cases.

6.2.5 3D result

For the 3D case, we used a parallel machine in the National Energy Research

Scientific Computing Center (NERSC) to solve the problem. Due to the com-

plexity of the problem, an operator splitting scheme is used. Instead of solving

(6.1) directly, every time step is split into an advection step

u∗ − un

∆t
+∇ · (un~V ) = 0, (6.6)

and Cahn-Hilliard (or Allen-Cahn, respectively) step

un+1 − u∗

∆t
= −ν∆(ε∆(Aun+1 + (1− A)u∗)− 1

ε
f(u∗)). (6.7)

The operator splitting and advection step are done by an ALE-AMR code [Ka10].

The Cahn-Hilliard step is solved by a specifically written finite element package.
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Figure 6.11: The advective Cahn-Hilliard equation breakup under a 2D expanding

flow with a square initial value

Figure 6.12: The advective nonlocal Allen-Cahn equation result under a 2D ex-

panding flow with a square initial value
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Figure 6.13: The advective Cahn-Hilliard equation breakup under a 2D expanding

flow with radially symmetric initial value

Figure 6.14: The advective nonlocal Allen-Cahn equation result under a 2D ex-

panding flow with radially symmetric initial value
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Figure 6.15: The advective Cahn-Hilliard equation breakup under a 2D sheer

flow

Figure 6.16: The advective nonlocal Allen-Cahn equation result under a 2D sheer

flow
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The simulation is run on a [0, 1]3 grid, with initial value being 1 on [0.35, 0.65]3

and 0 elsewhere. ε is still 0.01. The velocity field is prescribed as

~V (x, y, z) = (V0(x− 0.5), V0(y − 0.5), V0(z − 0.5)). (6.8)

where V0 = 1.0. The time step is chosen adaptively by the ALE-AMR code. and

the simulation shown is from time 0 to 1. The value of ν is 1× 10−4 for all cases.

The advective Cahn-Hilliard have a droplet breakup similar to that of 2D

case. The advective nonlocal Allen-Cahn equation simply performs a droplet

expansion and then merge into the background or stop expanding, depending on

the velocity field and droplet size. See Fig. 6.17 and Fig. 6.18.

6.2.6 Effect of Noise

The advective Allen-Cahn equation is more susceptible to noise compared to the

advective Cahn-Hilliard equation. For the advective Allen-Cahn equation, even

small noise in the initial value would lead to totally different behavior. However,

the advective Cahn-Hilliard equation requires much stronger noise, or noise over

time to make the result change. With strong enough noise, the droplet breakup

shows some irregularity and breaks symmetry. Fig. 6.19 and 6.20 have the same

setting as Fig. 6.11 and 6.12, except for a Gaussian noise of strength 0.01 added

on the initial value. Fig. 6.21 and 6.22, on the other hand, adds a Gaussian noise

every time step.

6.3 Concluding Remarks

In this part we focus on the properties and numerical simulation of the Cahn-

Hilliard and Allen-Cahn equations with advection of a prescribed compressible

flow. We have shown existence and uniqueness properties, and breakup condi-
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Figure 6.17: The advective Cahn-Hilliard equation breakup under a 3D expanding

flow

Figure 6.18: The advective nonlocal Allen-Cahn equation’s result under a 3D

expanding flow
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Figure 6.19: The advective Cahn-Hilliard equation breakup under a 2D expanding

flow with noise of strength 0.01 in the initial value. It has a similar structure to

that without noise.

Figure 6.20: The advective nonlocal Allen-Cahn equation breakup under a 2D

expanding flow with noise of strength 0.01 in the initial value. Without noise, it

will not break up.
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Figure 6.21: The advective Cahn-Hilliard equation breakup under a 2D expanding

flow with continual noise over time. Symmetry is broken under this noise strength.

Figure 6.22: The advective Cahn-Hilliard breakup under a 3D expanding flow

with continual noise over time. Symmetry is broken under this noise strength.
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tions for both equations. For the advective Cahn-Hilliard equation, the droplet

breakup condition is studied using a formal asymptotic analysis. It will hap-

pen when velocity field is large enough, and the threshold strength varies in-

verse quadratically with droplet size. For the advective Allen-Cahn equation,

the breakup condition is studied using a maximum principle analysis. It will not

happen without some kind of perturbation. Numerical results are provided in

one, two and three space dimensions, with various initial conditions and different

kinds of background flow. We also test numerical simulations with noise. The

theoretical breakup condition fits well with the numerical condition.

Eventually we need to simulate the droplet breakup phenomenon with surface

tension. For the future work, it is necessary to couple this model with other

compressible fluid models. It is important to consider the impact of the phase

field variable to the velocity field itself, and see how this model works within the

full problem.
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